中山大学学报自然科学版 ›› 2011, Vol. 50 ›› Issue (1): 34-38.

• 研究论文 • 上一篇    下一篇

含非线性色散项的KadomtsevPetrishvili方程的破缺行波解

高正晖,杨 柳
  

  1. (衡阳师范学院数学与计算科学系,湖南 衡阳 421008)
  • 收稿日期:2010-01-14 修回日期:1900-01-01 出版日期:2011-01-25 发布日期:2011-01-25

Breaking Traveling Wave Solutions of KadomtsevPetrishvili Equation with Nonlinear Dispersive Terms

GAO Zhenghui, YANG Liu

  

  1. (Department of Mathematics and Computational Science, Hengyang Normal University, Hengyang 421008, China)
  • Received:2010-01-14 Revised:1900-01-01 Online:2011-01-25 Published:2011-01-25

摘要: 应用平面动力系统分支理论的方法,在参数平面上给出了含非线性色散项的KadomtsevPetrishvili方程的行波解的分支相图,从而揭示了其行波解与参数的依赖关系,并获得了该方程的破缺行波解的参数表示。

关键词: 非线性色散KadomtsevPetrishvili方程, 环状孤波解, 破缺行波解, 分支相图

Abstract:

Bifurcation phase portraits of traveling wave solution for KadomtsevPetrishvili equation with nonlinear dispersive terms are given by using bifurcation theory of dynamical systems. Parametric representations of breaking traveling wave solutions of KadomtsevPetrishvili equation with nonlinear dispersive terms are obtained.

Key words: KadomtsevPetrishvili equation, nonlinear dispersive, loop soliton solution, breaking traveling wave solution, bifurcation phase portrait

中图分类号: