The changes of cultivated land area in the Tarim River Basin in recent years were analyzed with Mannkendall monotonic trend test and future trend change Hurst index based on water resources quantity and water resources utilization level data in Tarim River Basin and combined with the 〖WTBX〗Measures of Tarim River Basin Project and Non-project Implementation Plan for Five Year. The following factors were calculated for four source streams and mainstream of the Tarim River Basin: maximum irrigation area in 2010 and 2020, irrigation area overload situations in 2010, planning irrigation area overload situations and ecological water guarantee situations at different runoff frequencies in 2020. The results showed that: ① The cultivated land area increased significantly during 1990-2010, and it will keep increasing in the following years. ② The maximum irrigation area of the Tarim River basin in 2010 is 129.06×104 hm2. All basins except for the Hotan River Basin are overloaded, and total overload area is 43.33×104 hm2③ In 2020, all basins except for KaiKong River Basin are not overloaded at 25% runoff frequency, but equal planning irrigation area will be overloaded in dry season. The formulation of planning irrigation area should refer to the maximum irrigation area that the basin can carry in dry season; planning irrigation area of the basin is seriously overloaded at 50%, 75% and 90% runoff frequency, respectively, so management department should recognize the problems in planning irrigation area and put forward more scientific planning schemes. ④ Guarantee rates of ecological water in the basin at water frequencies of 25%, 50%, 75% and 90% are 95.7%,81.2%,61.4%,44.2%, respectively, suggesting that in the planning year there is a certain pressure on the ecological water supply during the dry season. This study provides a basis for the containment of the ecological and environmental deterioration of the Tarim River Basin, and it is also significant for the determination of artificial oasis scale of the basin according to the water resources quantity, optimization of water resource utilization planning and water distribution.